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Constraint-based Design
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Constraint-based Design
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- Fabrication requirement: planar panels!



Constraint-based Design
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- Fabrication requirement: planar panels!
- Aesthetics requirement: smooth patterns



Constraint-based Design
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- Coherence with design intent



Constraint-based Design
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Geometric shapes!
subject to constraints



ShapeOp

• C++ library for constrained geometry processing
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http://shapeop.org



Contributors
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Installation
1. Download the data files and unzip!

2. Copy all library files to C:\Users\$USERNAME$\AppData\Roaming\Grasshopper
\Libraries, where $USERNAME$ is the windows user name. For 64-bit Rhino, 
choose the files in the 64bit folder. Otherwise, use the 32bit folder.!

3. Unblock library files!

4. Install Visual C++ Redistributable Packages for Visual Studio 2013 
(https://www.microsoft.com/en-gb/download/details.aspx?id=40784).For 64-
bit Rhino, choose vcredist_x64.exe. Otherwise, choose vcredist_x86.exe.!

5. Add the ShapeOp.dll folder to PATH system variable !

6. Open Rhino and Grasshopper, load the file ShapeOp_Sheffield.gh. 
Specify the library files in your AppData\Roaming\Grasshopper\Libraries folder if you 
see error messages about not finding those files.
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LibShapeOp Solver

• Input!
– initial mesh!
– constraints for vertices!
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Figure 5: An architectural design (left) optimized for planar (middle) and circular mesh elements (right). The colored images
provide a visual comparison of the planarity error ep and circularity error ec. The error per face is the average squared distance
of its vertices to the least-squares fit. In addition to shape constraints, we apply closeness and smoothness terms, using weights
(lshape,lclose,lsmooth) = (5,10,2) in Equation 13. The bounding sphere diameter of the object is 1.

Projection: We formulate the parallelogram fitting by ex-
tending the projection for relative shapes as described above.
We first project the vertices onto their least-squares plane,
then formulate the optimization as
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As previously, the solution of this optimization is V
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A(AT
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Rectangle. This constraint specifies that a
quadrilateral should become a rectangle, i.e.
have only right angles.

Projection: We first project the vertices onto their least-
squares plane and then fit the rectangle in 2D. Unlike the
other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving
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This optimization is minimized by taking the QR decom-
position of A and solving a 2 ⇥ 2 eigenvalue problem as
described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

As we show below, the projection operators introduced
here provide a versatile toolbox for constructing geomet-
ric optimization methods. Other constraints, e.g. projection
onto a spline curve, a developable surface, or explicit sur-
face geometry, offer numerous opportunities for extending
our framework and designing new projection-based solvers.

4. Applications

Before we evaluate the behavior and performance of our
shape optimization framework, we highlight several appli-
cations. Beyond the shape constraints expressed in the prox-
imity function, these applications typically have other ob-
jectives that can be directly integrated into our approach by
defining suitable energy functions. In our examples, we use
two such additional energies, a smoothness term and an en-
ergy that penalizes deviation from a given reference surface.

The closeness energy measures the distance of a vertex vi
to the original surface as

Eclose =
n

Â
i=1

||vi � c(vi)||22, (11)

where c(vi) is the closest point on the original surface to the
vertex vi. We use a similar energy for boundary preserva-
tion and handle-based deformation. For smoothing, we use a
Laplacian energy [BKP⇤10] of the form

Esmooth =
n

Â
i=1

|| Â
{i, j}2E

wi j(l j � li)||22, (12)

where E denotes the mesh edges, li = vi for the surface
smoothing energy and li = vi � v

0
i for smoothing the de-

formation. We set the scalars wi j to the standard cotan-
gent weights for triangular meshes and uniform weights

c� 2012 The Author(s)
c� 2012 The Eurographics Association and Blackwell Publishing Ltd.



LibShapeOp Solver

• Output: a new mesh satisfying the constraints
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of its vertices to the least-squares fit. In addition to shape constraints, we apply closeness and smoothness terms, using weights
(lshape,lclose,lsmooth) = (5,10,2) in Equation 13. The bounding sphere diameter of the object is 1.

Projection: We formulate the parallelogram fitting by ex-
tending the projection for relative shapes as described above.
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This optimization is minimized by taking the QR decom-
position of A and solving a 2 ⇥ 2 eigenvalue problem as
described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

As we show below, the projection operators introduced
here provide a versatile toolbox for constructing geomet-
ric optimization methods. Other constraints, e.g. projection
onto a spline curve, a developable surface, or explicit sur-
face geometry, offer numerous opportunities for extending
our framework and designing new projection-based solvers.
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Before we evaluate the behavior and performance of our
shape optimization framework, we highlight several appli-
cations. Beyond the shape constraints expressed in the prox-
imity function, these applications typically have other ob-
jectives that can be directly integrated into our approach by
defining suitable energy functions. In our examples, we use
two such additional energies, a smoothness term and an en-
ergy that penalizes deviation from a given reference surface.

The closeness energy measures the distance of a vertex vi
to the original surface as

Eclose =
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c� 2012 The Author(s)
c� 2012 The Eurographics Association and Blackwell Publishing Ltd.



LibShapeOp Solver

• modified vertex positions!
• fixed connectivity
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(lshape,lclose,lsmooth) = (5,10,2) in Equation 13. The bounding sphere diameter of the object is 1.

Projection: We formulate the parallelogram fitting by ex-
tending the projection for relative shapes as described above.
We first project the vertices onto their least-squares plane,
then formulate the optimization as

argmin
v

⇤
1 ,v

⇤
2

||


I4⇥4
�I4⇥4

�

| {z }
A


v

⇤
1

v

⇤
2

�

|{z}
x

�

2

664

v1
v2
v3
v4

3

775

| {z }
b

||22. (9)

As previously, the solution of this optimization is V

⇤ =
A(AT

A)�1
A

T b.

Rectangle. This constraint specifies that a
quadrilateral should become a rectangle, i.e.
have only right angles.

Projection: We first project the vertices onto their least-
squares plane and then fit the rectangle in 2D. Unlike the
other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving

argmin
c1,c2,n

||

2

66666666664

1 0 v1x v1y
1 0 v2x v2y
0 1 v2y �v2x
0 1 v3y �v3x
�1 0 v3x v3y
�1 0 v4x v4y
0 �1 v4y �v4x
0 �1 v1y �v1x

3

77777777775

| {z }
A

2

664

c1
c2
nx
ny

3

775

| {z }
x

||22 s.t ||n||22 = 1.

(10)
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described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

As we show below, the projection operators introduced
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onto a spline curve, a developable surface, or explicit sur-
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our framework and designing new projection-based solvers.
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Before we evaluate the behavior and performance of our
shape optimization framework, we highlight several appli-
cations. Beyond the shape constraints expressed in the prox-
imity function, these applications typically have other ob-
jectives that can be directly integrated into our approach by
defining suitable energy functions. In our examples, we use
two such additional energies, a smoothness term and an en-
ergy that penalizes deviation from a given reference surface.

The closeness energy measures the distance of a vertex vi
to the original surface as
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Local-global Solver
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• Constraint: planar faces



Local-global Solver
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• Local step: projection for each constraint



Local-global Solver
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• Global step: update vertices using local projections



Example
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original projection linear solve projection linear solve converged

Constraint: square faces



Example

17

original projection linear solve projection linear solve converged

Constraint: square faces



Example
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original projection linear solve projection linear solve converged

Constraint: square faces



Example
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original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged



Example
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original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged



Constraints
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original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged



First Taste of ShapeOp

• Supported constraints!
– planar faces!
– edge length!
– angles!
– closeness to original mesh!
– fairing

22



Hard Constraints
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https://www.youtube.com/watch?v=gh-OAmWPaps

B. Deng, S. Bouaziz, M. Deuss, A. Kaspar, Y. Schwartzburg, M. 
Pauly. Interactive Design Exploration for Constrained Meshes. 
Computer-Aided Design, 2014.



C# Scripting with ShapeOp
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LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp
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LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp

dll file with C interface
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LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp

accessing mesh information



Plankton

• Open-source C# library implementing half-edge 
data structure for polygonal meshes
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https://github.com/Dan-Piker/Plankton



Half-edge Data Structure

• Efficient query of mesh connectivity!
– e.g., “find all neighboring vertices of a vertex”
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Half-edge Data Structure

• Efficient query of mesh connectivity!
– e.g., “find all neighboring vertices of a vertex”
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For more information:!
http://doc.cgal.org/latest/HalfedgeDS/index.html



Scripting with Plankton
• Create a PlanktonMesh:
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PlanktonMesh P = M.ToPlanktonMesh();



Scripting with Plankton
• Create a PlanktonMesh:
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PlanktonMesh P = M.ToPlanktonMesh();

• Access the list of all vertices:
PlanktonVertexList vtxList = P.Vertices;



Scripting with Plankton
• Create a PlanktonMesh:
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PlanktonMesh P = M.ToPlanktonMesh();

• Access the list of all vertices:
PlanktonVertexList vtxList = P.Vertices;

• Access vertex coordinates:
int i;!

Point3d pt = vtxList[i].ToPoint3d();!

double pt_x = vtxList[i].X;!

double pt_y = vtxList[i].Y;
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Exercise 1:!
Output all vertex positions using  List<Point3d>

Scripting with Plankton
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• Access the list of all faces:

PlanktonMesh P = M.ToPlanktonMesh();!

…!
PlanktonFaceList faceList = P.Faces;

Scripting with Plankton
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• Access the list of all faces:

PlanktonMesh P = M.ToPlanktonMesh();!

…!
PlanktonFaceList faceList = P.Faces;

Scripting with Plankton

• Access vertices inside a face:

int i;!

…!
int[] faceVtxList = faceList.GetFaceVertices(i);!
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Exercise 2: !
Output face centroids using List<Point3d>

Scripting with Plankton
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• Access the list of all half-edges:

PlanktonMesh P = M.ToPlanktonMesh();!

PlanktonHalfEdgeList halfEdgeList = P.Halfedges;

Scripting with Plankton
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• Opposite half-edge:

int j = halfEdgeList.GetPairHalfedge(i);

Scripting with Plankton
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• Vertices of a half-edge:

int[] vtxIdx = halfEdgeList.GetVertices(i);

Scripting with Plankton
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Exercise 3: !
Display edge mid-points

Scripting with Plankton
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Exercise 3: !
Display edge mid-points

Scripting with Plankton



• Check if a vertex is on boundary
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Scripting with Plankton

PlanktonMesh P = M.ToPlanktonMesh();

PlanktonVertexList vtxList = P.Vertices;

bool boundaryVtx = vtxList.IsBoundary(i);
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Scripting with Plankton

Exercise 4: !
Output boundary vertex positions



Plankton
• Access neighbor vertices of a vertex:
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PlanktonMesh P = M.ToPlanktonMesh();

PlanktonVertexList vtxList = P.Vertices;

int[] neighborVtx = vtxList.GetVertexNeighbours(i);



Plankton
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Exercise 5: !
Output centroids of neighboring vertices
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LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp



LibShapeOp
• Overview:
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Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver



LibShapeOp
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  [DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

  static extern IntPtr shapeop_create();

Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver

For more information:!
http://msdn.microsoft.com/en-us/library/aa288468(v=vs.71).aspx



LibShapeOp
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  [DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

  static extern void shapeop_delete(IntPtr op);

Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver



LibShapeOp
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Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_setPoints(IntPtr op, double[] points, int nb_points);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_getPoints(IntPtr op, double[] points, int nb_points);



LibShapeOp
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Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_setPoints(IntPtr op, double[] points, int nb_points);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_getPoints(IntPtr op, double[] points, int nb_points);

Coordinates array: (x1, y1, z1, . . . , xn, yn, zn)



LibShapeOp
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Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_init(IntPtr op);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_solve(IntPtr op, int iteration);



LibShapeOp
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Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_init(IntPtr op);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_solve(IntPtr op, int iteration);

Num. of iterations



LibShapeOp

Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver
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LibShapeOp

Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver
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[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_addConstraint(IntPtr op, IntPtr constraintType, 
int[] ids, int nb_ids, double weight);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_editConstraint(IntPtr op, IntPtr constraintType, 
int constraint_id, double[] scalar_params, int nb_param);



LibShapeOp

Create 
solver

Set vertex 
positions

Add 
constraints

Compute 
solution

Read 
solution

Delete 
solver
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[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_addConstraint(IntPtr op, IntPtr constraintType, 
int[] ids, int nb_ids, double weight);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_editConstraint(IntPtr op, IntPtr constraintType, 
int constraint_id, double[] scalar_params, int nb_param);



For the Passionate

• Adding new constraints!
– implement projection operators
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For more information:!
Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 
Shape-Up: Shaping Discrete Geometry with Projections. Computer Graphics Forum 
31(5): 1657-1667. 2012.



GhPython Interface

• Interaction, dynamic simulation, etc.
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GhPython Interface

• Interaction, dynamic simulation, etc.
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Thank you!


