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Drone AssemblyRobot Assembly
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Digital Fabrication Revolution

3D printed flute, MIT Media Lab

Urbee2, 3D printed car, !
Kor Ecologic

3D printed food, Natural Machines



3D Printing

• SLS printers!
– complex shapes!
– good quality
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3D Printing

• SLS printers!
– complex shapes!
– good quality!
– high price!
– limited size
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3D Printing

• FDM 3D printers!
– cheaper material
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3D Printing

• FDM 3D printers!
– cheaper material!
– lower quality!
– support structure
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Laser Cutting
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• Laser cutters!
– high precision!
– cheaper material!
– large working size



Laser Cutting
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• Laser cutters!
– high precision!
– cheaper material!
– large working size!
– require flat materials
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Shape
Fabrication !

Requirement

Design
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[Schwartzburg & Pauly 2013]

[Liu et al. 2011]

[Cignoni et al. 2014]
Shape

Fabrication !
Requirement

Design
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Architectural Geometry Digital Fabrication
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Architectural Geometry Digital Fabrication
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Walt Disney Concert Hall, Los Angeles!
Designed by Frank Gehry

The Gherkin, London!
Designed by Foster and Partners

BMW Welt, Munich!
Designed by Coop Himmelb(l)au
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Walt Disney Concert Hall, Los Angeles!
Designed by Frank Gehry

The Gherkin, London!
Designed by Foster and Partners

BMW Welt, Munich!
Designed by Coop Himmelb(l)au

Shape Quality!
vs.!

Construction Cost



Architectural Geometry

• Decomposition
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Architectural Geometry

• Developable panels

17



Architectural Geometry

• Planar panels
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Freeform surface!
(NURBS)

Workflow



Workflow
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Freeform surface!
(NURBS)

Panel Layout!
(Meshes)
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Freeform surface!
(NURBS)

Fabrication
Panel Layout!

(Meshes)
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Rationalization
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Requirements!
!
- element shapes



Rationalization
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Requirements!
- good approximation!
- element shapes
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Requirements!
- good approximation!
- panel shapes
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Requirements!
- good approximation!
- panel shapes
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Constrained Mesh
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Rationalization with planar panels, Leonardo Baglioni
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Rationalization with planar panels, Leonardo Baglioni



Rationalization
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Rationalization with planar panels, Leonardo Baglioni

Planar face



Rationalization
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Rationalization with planar panels, Leonardo Baglioni

Planar face
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Constraint: planar faces
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Constraint: planar faces



Editing
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Constrained!
Editing
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Editing

[Deng et al. 2013] [Deng et al. 2014][Kaspar & Deng 2013]

[Pottmann et al. 2010] [Deng et al. 2011]

Rationalization

[Wallner et al. 2010]
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Editing

[Deng et al. 2013] [Deng et al. 2014][Kaspar & Deng 2013]

[Pottmann et al. 2010] [Deng et al. 2011]

Rationalization

[Wallner et al. 2010]
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Tang Palace, Hangzhou, China!
Designed by Atelier FCJZ

Haseley Nine Bridges Golf Club House, Yeoju, Korea!
Designed by Shigeru Ban

• Structures with three families of curve elements



Motivation
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• Mathematically: 3-Webs
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• Mathematically: 3-Webs
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Motivation

41

• General curves: CNC machining
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• General curves: CNC machining



Manufacturing
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How to build them 
more efficiently?



Manufacturing

• Special curve elements are easier to fabricate!
– Planar
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Metropol Parasol, Seville, Spain



Manufacturing

• Special curve elements are easier to fabricate!
– Planar!
– Circular
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Metropol Parasol, Seville, Spain

Galleria Umberto I, Naples, Italy



Manufacturing

• Special curve elements are easier to fabricate!
– Planar!
– Circular!
– Geodesic
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Timber Rib Shell, IBOIS, EPFL



Problem

• Designing web structures with special curves
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Planar Circular Geodesic



Challenge
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• Finding a web on given surface
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• Finding a web on given surface
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• Finding a web on given surface



Challenge
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• Finding a web on given surface!
– no guarantee of solution
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• Finding a web on given surface!
– no guarantee of solution



Discretization

• Representation with regular triangle meshes
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Discretization

• Representation with regular triangle meshes
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Discretization

• Representation with regular triangle meshes

56

web curves edge polylines



Discretization

• Optimization for vertex positions!
– constraint satisfaction!
– closeness to target shape!
– smoothness
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Nonlinear Least Squares
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Nonlinear Least Squares



Discretization

• Optimization for vertex positions!
– shape constraints!
– closeness to target shape!
– smoothness
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Nonlinear Least Squares



Results

• Rationalization with geodesic web
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Results
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• Rationalization with geodesic web
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• Rationalization with geodesic web
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• Rationalization with geodesic web



Results
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Results

• Geodesic families + horizontal planar family
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Target surface Rationalization



Results
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Editing

[Deng et al. 2013] [Deng et al. 2014][Kaspar & Deng 2013]

[Pottmann et al. 2010] [Deng et al. 2011]

Rationalization

[Wallner et al. 2010]
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Editing

[Deng et al. 2013] [Deng et al. 2014][Kaspar & Deng 2013]

[Pottmann et al. 2010] [Deng et al. 2011]

Rationalization

[Wallner et al. 2010]
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Constrained Editing
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?

• Input!
– initial mesh with constraints



Constrained Editing
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?

• Input!
– initial mesh with constraints!
– handle vertices with target positions



Interactive Deformation
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Constraint: planar faces!



Constraints
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Constraints

74

• Hard constraints: satisfied exactly



Constraints
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• Hard constraints: satisfied exactly!
– example: planar faces



Constraints
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• Soft constraints: satisfied as much as possible



Constraints
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• Soft constraints: satisfied as much as possible!
– example: regular polygonal faces



Constrained Mesh Editing

78

• satisfy constraints
Requirements



Constrained Mesh Editing
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• satisfy constraints!
• smoothness

Requirements



Constrained Mesh Editing
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• satisfy constraints!
• smoothness!
• follow handles

Requirements



Constrained Mesh Editing
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• satisfy constraints!
• smoothness!
• follow handles!
• small deformation

Requirements



Constrained Mesh Editing

82

• satisfy constraints!
• smoothness!
• follow handles!
• small deformation

min F
di↵

+ F
handle

+ F
fair

+ F
con

s.t. hard constraints satisfied

Vertex position optimization:



Constrained Mesh Editing
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• satisfy constraints!
• smoothness!
• follow handles!
• small deformation

min F
di↵

+ F
handle

+ F
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+ F
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Constrained Mesh Editing
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• satisfy constraints!
• smoothness!
• follow handles!
• small deformation

min F
di↵

+ F
handle

+ F
fair

+ F
con

s.t. hard constraints satisfied

soft constraints

hard constraints

min F
di↵

+ F
handle

+ F
fair

+ F
con

s.t. hard constraints satisfied| {z }



Constrained Mesh Editing
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min F
di↵

+ F
handle

+ F
fair

+ F
con

s.t. hard constraints satisfied

Interactive performance?



Performance
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di↵

+ F
handle

+ F
fair

+ F
con

s.t. hard constraints satisfied

- Nonconvex, nonlinear!
- Many variables and constraints



Performance
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min F
di↵

+ F
handle

+ F
fair

+ F
con

s.t. hard constraints satisfied

- Nonconvex, nonlinear!
- Many variables and constraints

10K variables!
3K hard constraints!
15K soft constraints!



Performance
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min F
di↵

+ F
handle

+ F
fair

+ F
con

s.t. hard constraints satisfied

- Nonconvex, nonlinear!
- Many variables and constraints

Custom Solver



Example
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original projection linear solve projection linear solve converged

Constraint: square faces
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original projection linear solve projection linear solve converged

Constraint: square faces
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original projection linear solve projection linear solve converged

Constraint: square faces



Example
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original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged



Example

94

original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged



Efficiency

95

original projection linear solve projection linear solve converged

Projection: parallelizable



Efficiency
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original projection linear solve projection linear solve converged

Linear solve: fixed matrix



Realtime Deformation
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10K vertex variables!
3K hard constraints!
15K soft constraints!
NVIDIA Geforce GTX 580!



Result
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Architectural Geometry Digital Fabrication
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Architectural Geometry Digital Fabrication



Wire Mesh Design
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Wire Mesh Material
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Material Properties
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• Allow shearing & bending!

• No wire stretching!

• Limited shear



Applications
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wiremesh facade© Donald Kolberg © Randy Cooper



Challenge

• Freeform wire mesh from a single sheet

105

?+ =



Understanding the Material
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Understanding the Material

107

Counterintuitive deformations



Understanding the Material
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Counterintuitive deformations Insufficient material



Understanding the Material
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Counterintuitive deformations Insufficient material

Global Coupling



Mathematical Model
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• Quadrilateral mesh



Mathematical Model
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l

8
>>>><

>>>>:

• Quadrilateral mesh!
– constant edge length: inextensible wires



Mathematical Model
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• Quadrilateral mesh!
– constant edge length: inextensible wires!
– bounded angles                  : limited shearing

↵

[45�, 135�]



Mathematical Model

• Discrete model of Chebyshev nets:

113

P. Chebyshev  1821-1894 



Problem Formulation
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• Find a discrete Chebyshev net to approximate 
the target surface
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OptimizationInteractive Edit



Workflow
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OptimizationInteractive Edit



Interactive Editing
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create initial layout add/remove materials remove overlaps



Workflow
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OptimizationInteractive Edit



Optimization Tool
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Deviation from 
target surface



Optimization Tool
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Global optimization



Example Design Session

121



Results
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Results
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height: 580 mm!
deviation < 0.5 mm



Fabrication
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Digital Design Physical Realization



Fabrication
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Scaffold



Fabrication
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Fabrication
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Intersection Curves



Fabrication
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Fabrication
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Fabrication
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Final Result
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Final Result



Conclusion

• Fabrication Requirement            Geometric Constraints
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Conclusion

• Fabrication Requirement            Geometric Constraints!

• Constrained Optimization
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Conclusion

• Fabrication Requirement            Geometric Constraints!

• Constrained Optimization!

• Efficient solver
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Fabrication-aware 
Design

Shape

Fabrication !
Requirement



Outlook
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Fabrication-aware 
Design

Performative!
Criteria

Structural !
Properties

Shape

Fabrication !
Requirement
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J. Wang, C. Jiang, P. Bompas, J. Wallner, H. Pottmann / Discrete Line Congruences for Shading and Lighting

10:00 12:00 14:00

Figure 9: Selective Shading:
Moving patterns generated
by shading system optimized
for blocking light at 12:00
except at designated areas.

light which correspond to the location of the sun during
“hot” times like early afternoon in summer. If the depth of
shading fins is made minimal, then obviously at other times
the sun is not completely blocked. Note that these shading
systems are “freeform” even if the underlying reference sur-
face is not, such as in Figure 7d.

For Figure 7 in general, a design surface (referred to as
“mesh A” in our description of the optimization procedure)
is equipped with a line congruence L, which is initialized
from surface normals of A and is subsequently optimized us-
ing a target functional composed of fnorm, ffair, and a linear
combination of terms fperp,i (among other terms). The lat-
ter make lines of L orthogonal to the vector di = d = const.
which indicates the direction of light. Having computed L,
we perform quad remeshing guided by L’s torsal frame field,
and subsequently optimize a torsion-free support structure.

For Figures 7a, 7b the support structure is to be aligned
with the boundary and a user’s design strokes, so optimiza-
tion uses terms fdir(4) to achieve prescribed torsal direc-
tions for faces contained in a certain subset F 0 ✓ F (F 0 is
marked in red in small inset figures). In a similar manner the
shading system of 7d has been optimized. As an alternative
to fperp,i, here sun blocking is achieved using a linear com-
bination of terms fplane(4) which position torsal planes of
the congruence directly orthogonal to incoming light.

Finally Figure 7c exhibits a shading system with the prop-
erty that certain objects are visible through the shading sys-
tem in designated areas (blue rectangles in inset figure). Op-
timization therefore has to make sure that for vertices in a
subset V 0 ✓ V the lines of L pass through prescribed target
points Oi. This constraint is incorporated into our optimiza-

Figure 10: Creating full shade by thin developable strips,
created by the application of subdivision+optimization to a
shading system with planar faces.

tion by augmenting the target functional with linear combi-
nations of fpar,i, for vertices in V 0. Such constraints could be
used e.g. for ensuring that people in offices see a portion of
the sky. |newFor optimizing the congruences L correspond-
ing to Figure 7, we use the target functional

f = wnorm fnorm +wfair ffair +wfair/t ffair/t (9)

+wperp
1
|V | Âai

fperp,i +wdir
1

|F 0| Â42F0 fdir(4)

+wpar
1

|V 0| Âai2V 0 fpar,i +wplane
1
|F| Â42F fplnr(4).

For constraints and the choice of weights see Figure 12.

Selective Blocking of Light (Figure 9). This architectural
design is to give shade except for a designated area where
shading fins are to be parallel to incoming rays. To create
this example we proceed similar to Figure 7c: The base mesh
represents the design surface, its normals initialize L. A sub-
set V 0 ⇢ V of vertices specifies the area where light should
come through. The optimization uses the target functional
(9), with the ‘parallel’ and ‘perpendicular’ terms given as

wpar

|V 0| Âai2V 0 fpar,i +
wperp

|V \V 0| Âai2V\V 0 fperp,i.

( fpar,i, fperp,i involve the direction di = d = const. of light).

Shading by Single-Curved Elements (Figure 10). A se-
quence of planar quadrilaterals is a discrete developable sur-
face (see e.g. the red and yellow developables of Figure 5).
This interpretation motivates us to apply a refinement proce-
dure according to [LPW⇤06] to a torsion-free support struc-
ture in order to convert it into a system of smooth devel-
opables: we iteratively apply splitting, smoothing, and op-
timization towards planar faces. Applications are structures
built from plywood or sheet metal, whose manufacturing de-
pends on the developability property.

Indirect Lighting by Reflection (Figures 1, 11, 13). We ex-
tend our methods to indirect lighting by reflection. To guide
a ray of light towards a prescribed direction, a bisector plane
of the original ray and the reflected ray has to be used as a
mirror surface. We therefore optimize a congruence L such
that precomputed mirror planes become torsal planes. Fig-
ure 11 actually exhibits a 2nd torsion-free supporting struc-
ture, which does have the function indicated by its name,
namely a steel substructure aligned with the shading system
(Fig. 11(d3)). It is based on a congruence L0 which is op-
timized simultaneously with L. Alignment of L,L0 means
that torsal directions of L,L0 coincide which is achieved by

c� 2013 The Author(s)
c� 2013 The Eurographics Association and Blackwell Publishing Ltd.
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