
Constrained Geometry Processing!
Using ShapeOp

Bailin Deng!
Department of Computer Science!

University of Hull!

b.deng@hull.ac.uk

Constraint-based Design

2

Constraint-based Design

3

- Fabrication requirement: planar panels!

Constraint-based Design

4

- Fabrication requirement: planar panels!
- Aesthetics requirement: smooth patterns

Constraint-based Design

5

- Coherence with design intent

Constraint-based Design

6

Geometric shapes!
subject to constraints

ShapeOp

• C++ library for constrained geometry processing

7

http://shapeop.org

Contributors

8

• Computer Graphics and Geometry Lab, EPFL

• CITA, Royal Danish
Academy of Fine Arts

• Robert McNeel & Associates

Installation
1. Download the data files and unzip!

2. Copy all library files to C:\Users\$USERNAME$\AppData\Roaming\Grasshopper
\Libraries, where $USERNAME$ is the windows user name. For 64-bit Rhino,
choose the files in the 64bit folder. Otherwise, use the 32bit folder.!

3. Unblock library files!

4. Install Visual C++ Redistributable Packages for Visual Studio 2013
(https://www.microsoft.com/en-gb/download/details.aspx?id=40784).For 64-
bit Rhino, choose vcredist_x64.exe. Otherwise, choose vcredist_x86.exe.!

5. Add the ShapeOp.dll folder to PATH system variable !

6. Open Rhino and Grasshopper, load the file ShapeOp_Sheffield.gh.
Specify the library files in your AppData\Roaming\Grasshopper\Libraries folder if you
see error messages about not finding those files.

9

LibShapeOp Solver

• Input!
– initial mesh!
– constraints for vertices!

10

S.Bouaziz, M.Deuss, Y.Schwartzburg, T.Weise, M.Pauly / Shape-Up

2.019e-05
2.506e-07

original optimized
average

maximum 6.173e-06
4.036e-06

planar elementsoriginal model

: 8.7e-5
: 2.2e-5

0

Figure 5: An architectural design (left) optimized for planar (middle) and circular mesh elements (right). The colored images
provide a visual comparison of the planarity error ep and circularity error ec. The error per face is the average squared distance
of its vertices to the least-squares fit. In addition to shape constraints, we apply closeness and smoothness terms, using weights
(lshape,lclose,lsmooth) = (5,10,2) in Equation 13. The bounding sphere diameter of the object is 1.

Projection: We formulate the parallelogram fitting by ex-
tending the projection for relative shapes as described above.
We first project the vertices onto their least-squares plane,
then formulate the optimization as

argmin
v

⇤
1 ,v

⇤
2

||


I4⇥4
�I4⇥4

�

| {z }
A


v

⇤
1

v

⇤
2

�

|{z}
x

�

2

664

v1
v2
v3
v4

3

775

| {z }
b

||22. (9)

As previously, the solution of this optimization is V

⇤ =
A(AT

A)�1
A

T b.

Rectangle. This constraint specifies that a
quadrilateral should become a rectangle, i.e.
have only right angles.

Projection: We first project the vertices onto their least-
squares plane and then fit the rectangle in 2D. Unlike the
other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving

argmin
c1,c2,n

||

2

66666666664

1 0 v1x v1y
1 0 v2x v2y
0 1 v2y �v2x
0 1 v3y �v3x
�1 0 v3x v3y
�1 0 v4x v4y
0 �1 v4y �v4x
0 �1 v1y �v1x

3

77777777775

| {z }
A

2

664

c1
c2
nx
ny

3

775

| {z }
x

||22 s.t ||n||22 = 1.

(10)

This optimization is minimized by taking the QR decom-
position of A and solving a 2 ⇥ 2 eigenvalue problem as
described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

As we show below, the projection operators introduced
here provide a versatile toolbox for constructing geomet-
ric optimization methods. Other constraints, e.g. projection
onto a spline curve, a developable surface, or explicit sur-
face geometry, offer numerous opportunities for extending
our framework and designing new projection-based solvers.

4. Applications

Before we evaluate the behavior and performance of our
shape optimization framework, we highlight several appli-
cations. Beyond the shape constraints expressed in the prox-
imity function, these applications typically have other ob-
jectives that can be directly integrated into our approach by
defining suitable energy functions. In our examples, we use
two such additional energies, a smoothness term and an en-
ergy that penalizes deviation from a given reference surface.

The closeness energy measures the distance of a vertex vi
to the original surface as

Eclose =
n

Â
i=1

||vi � c(vi)||22, (11)

where c(vi) is the closest point on the original surface to the
vertex vi. We use a similar energy for boundary preserva-
tion and handle-based deformation. For smoothing, we use a
Laplacian energy [BKP⇤10] of the form

Esmooth =
n

Â
i=1

|| Â
{i, j}2E

wi j(l j � li)||22, (12)

where E denotes the mesh edges, li = vi for the surface
smoothing energy and li = vi � v

0
i for smoothing the de-

formation. We set the scalars wi j to the standard cotan-
gent weights for triangular meshes and uniform weights

c� 2012 The Author(s)
c� 2012 The Eurographics Association and Blackwell Publishing Ltd.

LibShapeOp Solver

• Output: a new mesh satisfying the constraints

11

S.Bouaziz, M.Deuss, Y.Schwartzburg, T.Weise, M.Pauly / Shape-Up

2.019e-05
2.506e-07

original optimized
average

maximum 6.173e-06
4.036e-06

planar elementsoriginal model

: 8.7e-5
: 2.2e-5

0

Figure 5: An architectural design (left) optimized for planar (middle) and circular mesh elements (right). The colored images
provide a visual comparison of the planarity error ep and circularity error ec. The error per face is the average squared distance
of its vertices to the least-squares fit. In addition to shape constraints, we apply closeness and smoothness terms, using weights
(lshape,lclose,lsmooth) = (5,10,2) in Equation 13. The bounding sphere diameter of the object is 1.

Projection: We formulate the parallelogram fitting by ex-
tending the projection for relative shapes as described above.
We first project the vertices onto their least-squares plane,
then formulate the optimization as

argmin
v

⇤
1 ,v

⇤
2

||


I4⇥4
�I4⇥4

�

| {z }
A


v

⇤
1

v

⇤
2

�

|{z}
x

�

2

664

v1
v2
v3
v4

3

775

| {z }
b

||22. (9)

As previously, the solution of this optimization is V

⇤ =
A(AT

A)�1
A

T b.

Rectangle. This constraint specifies that a
quadrilateral should become a rectangle, i.e.
have only right angles.

Projection: We first project the vertices onto their least-
squares plane and then fit the rectangle in 2D. Unlike the
other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving

argmin
c1,c2,n

||

2

66666666664

1 0 v1x v1y
1 0 v2x v2y
0 1 v2y �v2x
0 1 v3y �v3x
�1 0 v3x v3y
�1 0 v4x v4y
0 �1 v4y �v4x
0 �1 v1y �v1x

3

77777777775

| {z }
A

2

664

c1
c2
nx
ny

3

775

| {z }
x

||22 s.t ||n||22 = 1.

(10)

This optimization is minimized by taking the QR decom-
position of A and solving a 2 ⇥ 2 eigenvalue problem as
described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

As we show below, the projection operators introduced
here provide a versatile toolbox for constructing geomet-
ric optimization methods. Other constraints, e.g. projection
onto a spline curve, a developable surface, or explicit sur-
face geometry, offer numerous opportunities for extending
our framework and designing new projection-based solvers.

4. Applications

Before we evaluate the behavior and performance of our
shape optimization framework, we highlight several appli-
cations. Beyond the shape constraints expressed in the prox-
imity function, these applications typically have other ob-
jectives that can be directly integrated into our approach by
defining suitable energy functions. In our examples, we use
two such additional energies, a smoothness term and an en-
ergy that penalizes deviation from a given reference surface.

The closeness energy measures the distance of a vertex vi
to the original surface as

Eclose =
n

Â
i=1

||vi � c(vi)||22, (11)

where c(vi) is the closest point on the original surface to the
vertex vi. We use a similar energy for boundary preserva-
tion and handle-based deformation. For smoothing, we use a
Laplacian energy [BKP⇤10] of the form

Esmooth =
n

Â
i=1

|| Â
{i, j}2E

wi j(l j � li)||22, (12)

where E denotes the mesh edges, li = vi for the surface
smoothing energy and li = vi � v

0
i for smoothing the de-

formation. We set the scalars wi j to the standard cotan-
gent weights for triangular meshes and uniform weights

c� 2012 The Author(s)
c� 2012 The Eurographics Association and Blackwell Publishing Ltd.

LibShapeOp Solver

• modified vertex positions!
• fixed connectivity

12

S.Bouaziz, M.Deuss, Y.Schwartzburg, T.Weise, M.Pauly / Shape-Up

2.019e-05
2.506e-07

original optimized
average

maximum 6.173e-06
4.036e-06

planar elementsoriginal model

: 8.7e-5
: 2.2e-5

0

Figure 5: An architectural design (left) optimized for planar (middle) and circular mesh elements (right). The colored images
provide a visual comparison of the planarity error ep and circularity error ec. The error per face is the average squared distance
of its vertices to the least-squares fit. In addition to shape constraints, we apply closeness and smoothness terms, using weights
(lshape,lclose,lsmooth) = (5,10,2) in Equation 13. The bounding sphere diameter of the object is 1.

Projection: We formulate the parallelogram fitting by ex-
tending the projection for relative shapes as described above.
We first project the vertices onto their least-squares plane,
then formulate the optimization as

argmin
v

⇤
1 ,v

⇤
2

||


I4⇥4
�I4⇥4

�

| {z }
A


v

⇤
1

v

⇤
2

�

|{z}
x

�

2

664

v1
v2
v3
v4

3

775

| {z }
b

||22. (9)

As previously, the solution of this optimization is V

⇤ =
A(AT

A)�1
A

T b.

Rectangle. This constraint specifies that a
quadrilateral should become a rectangle, i.e.
have only right angles.

Projection: We first project the vertices onto their least-
squares plane and then fit the rectangle in 2D. Unlike the
other polygonal shapes, we compute the equation of the four
lines that define the rectangle by solving

argmin
c1,c2,n

||

2

66666666664

1 0 v1x v1y
1 0 v2x v2y
0 1 v2y �v2x
0 1 v3y �v3x
�1 0 v3x v3y
�1 0 v4x v4y
0 �1 v4y �v4x
0 �1 v1y �v1x

3

77777777775

| {z }
A

2

664

c1
c2
nx
ny

3

775

| {z }
x

||22 s.t ||n||22 = 1.

(10)

This optimization is minimized by taking the QR decom-
position of A and solving a 2 ⇥ 2 eigenvalue problem as
described in [GH95]. We then find the projected points by
computing the intersection of these four lines.

As we show below, the projection operators introduced
here provide a versatile toolbox for constructing geomet-
ric optimization methods. Other constraints, e.g. projection
onto a spline curve, a developable surface, or explicit sur-
face geometry, offer numerous opportunities for extending
our framework and designing new projection-based solvers.

4. Applications

Before we evaluate the behavior and performance of our
shape optimization framework, we highlight several appli-
cations. Beyond the shape constraints expressed in the prox-
imity function, these applications typically have other ob-
jectives that can be directly integrated into our approach by
defining suitable energy functions. In our examples, we use
two such additional energies, a smoothness term and an en-
ergy that penalizes deviation from a given reference surface.

The closeness energy measures the distance of a vertex vi
to the original surface as

Eclose =
n

Â
i=1

||vi � c(vi)||22, (11)

where c(vi) is the closest point on the original surface to the
vertex vi. We use a similar energy for boundary preserva-
tion and handle-based deformation. For smoothing, we use a
Laplacian energy [BKP⇤10] of the form

Esmooth =
n

Â
i=1

|| Â
{i, j}2E

wi j(l j � li)||22, (12)

where E denotes the mesh edges, li = vi for the surface
smoothing energy and li = vi � v

0
i for smoothing the de-

formation. We set the scalars wi j to the standard cotan-
gent weights for triangular meshes and uniform weights

c� 2012 The Author(s)
c� 2012 The Eurographics Association and Blackwell Publishing Ltd.

Local-global Solver

13

• Constraint: planar faces

Local-global Solver

14

• Local step: projection for each constraint

Local-global Solver

15

• Global step: update vertices using local projections

Example

16

original projection linear solve projection linear solve converged

Constraint: square faces

Example

17

original projection linear solve projection linear solve converged

Constraint: square faces

Example

18

original projection linear solve projection linear solve converged

Constraint: square faces

Example

19

original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged

Example

20

original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged

Constraints

21

original projection linear solve projection linear solve converged

Constraint: square faces

original projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve convergedoriginal projection linear solve projection linear solve converged

First Taste of ShapeOp

• Supported constraints!
– planar faces!
– edge length!
– angles!
– closeness to original mesh!
– fairing

22

Hard Constraints

23

https://www.youtube.com/watch?v=gh-OAmWPaps

B. Deng, S. Bouaziz, M. Deuss, A. Kaspar, Y. Schwartzburg, M.
Pauly. Interactive Design Exploration for Constrained Meshes.
Computer-Aided Design, 2014.

C# Scripting with ShapeOp

24

25

LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp

26

LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp

dll file with C interface

27

LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp

accessing mesh information

Plankton

• Open-source C# library implementing half-edge
data structure for polygonal meshes

28

https://github.com/Dan-Piker/Plankton

Half-edge Data Structure

• Efficient query of mesh connectivity!
– e.g., “find all neighboring vertices of a vertex”

29

Half-edge Data Structure

• Efficient query of mesh connectivity!
– e.g., “find all neighboring vertices of a vertex”

30

For more information:!
http://doc.cgal.org/latest/HalfedgeDS/index.html

Scripting with Plankton
• Create a PlanktonMesh:

31

PlanktonMesh P = M.ToPlanktonMesh();

Scripting with Plankton
• Create a PlanktonMesh:

32

PlanktonMesh P = M.ToPlanktonMesh();

• Access the list of all vertices:
PlanktonVertexList vtxList = P.Vertices;

Scripting with Plankton
• Create a PlanktonMesh:

33

PlanktonMesh P = M.ToPlanktonMesh();

• Access the list of all vertices:
PlanktonVertexList vtxList = P.Vertices;

• Access vertex coordinates:
int i;!

Point3d pt = vtxList[i].ToPoint3d();!

double pt_x = vtxList[i].X;!

double pt_y = vtxList[i].Y;

34

Exercise 1:!
Output all vertex positions using List<Point3d>

Scripting with Plankton

35

• Access the list of all faces:

PlanktonMesh P = M.ToPlanktonMesh();!

…!
PlanktonFaceList faceList = P.Faces;

Scripting with Plankton

36

• Access the list of all faces:

PlanktonMesh P = M.ToPlanktonMesh();!

…!
PlanktonFaceList faceList = P.Faces;

Scripting with Plankton

• Access vertices inside a face:

int i;!

…!
int[] faceVtxList = faceList.GetFaceVertices(i);!

37

Exercise 2: !
Output face centroids using List<Point3d>

Scripting with Plankton

38

• Access the list of all half-edges:

PlanktonMesh P = M.ToPlanktonMesh();!

PlanktonHalfEdgeList halfEdgeList = P.Halfedges;

Scripting with Plankton

39

• Opposite half-edge:

int j = halfEdgeList.GetPairHalfedge(i);

Scripting with Plankton

40

• Vertices of a half-edge:

int[] vtxIdx = halfEdgeList.GetVertices(i);

Scripting with Plankton

41

Exercise 3: !
Display edge mid-points

Scripting with Plankton

42

Exercise 3: !
Display edge mid-points

Scripting with Plankton

• Check if a vertex is on boundary

43

Scripting with Plankton

PlanktonMesh P = M.ToPlanktonMesh();

PlanktonVertexList vtxList = P.Vertices;

bool boundaryVtx = vtxList.IsBoundary(i);

44

Scripting with Plankton

Exercise 4: !
Output boundary vertex positions

Plankton
• Access neighbor vertices of a vertex:

45

PlanktonMesh P = M.ToPlanktonMesh();

PlanktonVertexList vtxList = P.Vertices;

int[] neighborVtx = vtxList.GetVertexNeighbours(i);

Plankton

46

Exercise 5: !
Output centroids of neighboring vertices

47

LibShapeOp

C# Component

Plankton

C# Scripting with ShapeOp

LibShapeOp
• Overview:

48

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

LibShapeOp

49

 [DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

 static extern IntPtr shapeop_create();

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

For more information:!
http://msdn.microsoft.com/en-us/library/aa288468(v=vs.71).aspx

LibShapeOp

50

 [DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

 static extern void shapeop_delete(IntPtr op);

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

LibShapeOp

51

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_setPoints(IntPtr op, double[] points, int nb_points);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_getPoints(IntPtr op, double[] points, int nb_points);

LibShapeOp

52

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_setPoints(IntPtr op, double[] points, int nb_points);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern void shapeop_getPoints(IntPtr op, double[] points, int nb_points);

Coordinates array: (x1, y1, z1, . . . , xn, yn, zn)

LibShapeOp

53

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_init(IntPtr op);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_solve(IntPtr op, int iteration);

LibShapeOp

54

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_init(IntPtr op);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_solve(IntPtr op, int iteration);

Num. of iterations

LibShapeOp

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

55

LibShapeOp

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

56

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_addConstraint(IntPtr op, IntPtr constraintType,
int[] ids, int nb_ids, double weight);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_editConstraint(IntPtr op, IntPtr constraintType,
int constraint_id, double[] scalar_params, int nb_param);

LibShapeOp

Create
solver

Set vertex
positions

Add
constraints

Compute
solution

Read
solution

Delete
solver

57

[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_addConstraint(IntPtr op, IntPtr constraintType,
int[] ids, int nb_ids, double weight);!

!
[DllImport("ShapeOp.dll", CallingConvention=CallingConvention.Cdecl)]!

static extern int shapeop_editConstraint(IntPtr op, IntPtr constraintType,
int constraint_id, double[] scalar_params, int nb_param);

For the Passionate

• Adding new constraints!
– implement projection operators

58

For more information:!
Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly.
Shape-Up: Shaping Discrete Geometry with Projections. Computer Graphics Forum
31(5): 1657-1667. 2012.

GhPython Interface

• Interaction, dynamic simulation, etc.

59

GhPython Interface

• Interaction, dynamic simulation, etc.

59

60

Thank you!

